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ON TIYE DIRECT SOLUTION OF THE GOVERNING EQUATION 

FOR RADLATION-RESISTED SHOCK WAVES 

By Walter E. Pearson 

SUMMARY 

This invest igat ion is concerned with the s ingular ,  nonlinear,  in tegra l  equa- 
t i o n  t h a t  arises i n  the  theore t ica l  study of inviscid,  radiat ion-resis ted shock 
waves without heat  conduction. A simple, i t e r a t i v e  technique is  given f o r  the  
solut ion of t h i s  equation. 
i t e r a t i o n  are given, and the  technique i s  then applied t o  two examples with 
d i f f e ren t  shock and radiat ion s t rengths .  When the  ve loc i ty  p ro f i l e s  obtained are 
coapared with earlier results which adapt a specialized approximation from astro-  

Suff ic ient  conditions f o r  t he  convergence of  the  

physics, very close agreement is  revealed. 

INTRODUCTION 

Recent studies (refs. 1 and 2) of  radiat ion-resis ted shock waves have exhib- 
i t e d  ve loc i ty  and temperature p ro f i l e s  f o r  charac te r i s t ic  combinations of shock 
s t rength and radiat ion in tens i ty .  
which governs the  physical s t ruc ture  of t he  shock wave is  developed from the  l a w s  
of conservation of mass, momentum, and energy; i t s  solut ion is  then approximated 
t o  obtain the  p ro f i l e s  mentioned. 

The singular, nonlinear i n t eg ra l  equation 

The integrand of the governing in t eg ra l  equation contains the  influence 
function 

where E 2 ( t )  i s  the  integro-exponential function of order 2.  
References 1 and 2 approximate t h i s  influence function by the  use of 

(See ref.  3 . )  

E2(t) =: me-nt 

The constants,  m and n,  are assigned by c r i t e r i a  which are i n t u i t i v e l y  chosen t o  
f i t  t h e  physical s i tua t ion .  

This kind of approximation has long been used i n  the  rad ia t ion  problems of 
astrophysics.  It i s  na tura l  t h a t  the  question of i t s  u t i l i t y  i n  the  realm of gas 
dynamics should arise. The present study was  i n i t i a t e d  t o  provide an answer t o  
t h i s  question, and it uses the  analysis  leading t o  the  governing equation, 
developed i n  the  e a r l i e r  papers, as i ts  s t a r t i ng  point .  During t h e  course of the  
invest igat ion,  it w a s  rea l ized  t h a t  the techrlique of successive approximations 
w a s  not only applicable f o r  purposes of t he  present study, but obviates t h e  use 
o f  more i n t r i c a t e  methods i n  many problems of  rad ia t ive  t ransfer .  



It is  therefore  intended t h a t  t he  present paper serve two functions: f i rs t ,  
t o  present a d i r ec t  method of solving the  governing equation, and second, t o  
compare r e su l t s  from the  d i r e c t  solut ion and the  approximate solut ion obtained i n  
reference 1. 

IMPORTANT SYMBOLS 

integro-exponential function of order 2 

spec i f ic  enthalpy 

kernel fuction of the  governing in t eg ra l  equation 

s t a t i c  pressure 

heat f l u x  due t o  radiat ion 

gas temperature 

gas veloci ty  

normalized gas ve loc i ty  

"dimensionless distance" from the  shock wave 

r a t i o  of spec i f ic  hea ts  

parameter of the governing in t eg ra l  equation 

gas densi ty  

t h e  integral. appearing in  the  governing equation, multiplied by A 

ANALYSIS 

A br ief  recounting of the  basic  equations of references 1 and 2 will be given 
t o  es tab l i sh  the  point of departure for t he  present work. 

The Governing Equation 

The flow under consideration i s  one-dimensional, steady, inviscid,  and with- 
out heat conduction, but t he  gas is  both a rad ia t ing  and absorbing medium. 
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The conservation l a w s  then give 

(momentum) du 
dx dx 
- dp + pu- = 0 

Here, u is the  gas velocity,  h is  the specif ic  enthalpy, p is the s t a t i c  pres- 
sure, p is  the density, and q is the heat f l ux  due t o  radiat ion.  These equa- 
t i ons  can be integrated immediately t o  give 

QU = r ( 2 4  

r~ + p  = rel (2b) 

(2c) r [ h  + (1/2)u2] + q = rc2 

where I?, c1, and c2 are constants of integration. 

A t  t h i s  point ,  it i s  convenient t o  assume t h a t  the gas is a perfect gas with 
gas constant 
The perfect  gas assuxrrption a l so  implies the re la t ions  

R = cp - cv, and a constant r a t i o  of spec i f ic  heats  y = cp/cv. 

P =  

where T i s  the  gas temperature. 
(2a),  (2b),  and ( 2 c ) ,  give 

and 

pRT and h = cpT 

These relat ions,  when combined with equations 

Equation (4) is the  governing equation f o r  the  veloci ty  p ro f i l e ,  and equation 
( 3 )  defines the temperature prof i le  i n  terms of velocity.  It remains t o  supply 
an expression f o r  

In reference 
given by 

the radiat ive heat flux, q. 

1, q is  defined i n  terms of a dimensionless distance , y ,  
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where the function 
emitting grey gas.  The expression f o r  q is  

a (x)  is  the  absorption coef f ic ien t  f o r  an absorbing and 

q(y) = 2 j  " oT4(z)E2(y - z)dz - 2 f14(z )E2(z  - y)dz 
-W ( 5 )  

In  t h i s  equation, 0 i s  the Stefan-Boltzaann constant,  and E 2 ( t )  is  a pa r t i cu la r  
member of the family of  integro-different ia l  functions of  order n .  

The expression for q(y) can be shortened conveniently by the  convention 

K ( Y A  = s g 4 y  - Z ) E 2 ( 1 Y  - Z l )  ( 7 )  
With t h i s  notat ion,  equation ( 5 )  becomes 

l 

and the  governing equation (4) is  wri t ten as 

Now equation (3)  shows t h a t  !l? can be expressed i n  terms of u, so  t h a t  equa- 
t i on  (8) is  an in tegra l  equation. 
the variable i s  changed t o  

Before a subs t i tu t ion  i s  made for T4,  however, 

I This w i l l  fu r ther  simplify equation (8), and r e s t r i c t  the  range of the  unknown 
function i n  equation (8) t o  
be comes 

0 < v(y)  < 1. With t h i s  subs t i tu t ion ,  equation (3)  

and equation (8) becomes 
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Further s implif icat ion of equation (10) i s  possible by se t t i ng  

V(-W> = v1 

Since E21+w - z 1 = 0 f o r  all 
v2 are roots  of the  equation 

z ,  it follows t h a t  K(+W,Z)Z 

This shows t h a t  

0. Hence, v1 and 

= o  

Therefore. equation (10) i s  rewrit ten as 

PO3 

with 

4(r - 1 ) U c p  

r(Y + 1 ) ~ ~  
A =  

It i s  a t  t h i s  point t h a t  references 1 and 2 Illake the  approximation 

-nt E 2 ( t )  z me 

Direct Solution of the Nonlinear Equation 

In what i s  t o  follow, the  notation $(y) w i l l  be used fo r  the  right-hand 
term of equation (11); t h a t  is ,  

Since v1 > v(y) > v, f o r  a l l  
t h a t  $(y? - < 0 for a l l  y. From 

y ( re f .  l), the  r igh t  s ide of equation (12) shows 

.5 



it i s  c l ea r  t h a t  

Therefore, the range of $(y) i s  bounded by 

In reference 1 it i s  shown t h a t  v(y)  i s  a monotone decreasing function, and 
The t h i s  provides a means f o r  choosing the  proper sign (k) i n  equation (13).  

o r ig in  has been fixed so t h a t  

and, hence , 

With t h i s  i n  mind, equation (13) can be wri t ten 

Equation (14), by removing the ambiguity of sign i n  equation (l3), permits 
a reformulation of  the governing equation (11) with 
When $(y) is  determined, v(y)  is  uniquely defined. 
$(y) i m p l i e s  t h a t  it i s  a continuous function, defined f o r  all 
f a c t ,  it can be shown tha t  

$(y) as the  unknown function. 
Moreover, the  de f in i t i on  of 

y, and from t h i s  
f [ $ ( y ) ] ,  where 

c 

is  continuous except f o r  a possible jump discont inui ty  a t  y = 0 .  

TO see t h i s ,  it is  only necessary t o  show t h a t  v(y) i s  continuous except 
f o r  a possible jump discont inui ty  a t  y = 0 .  
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Since v(y)  always takes on the values 
t i o n  (E?) implies t h a t  $(y)  always takes on the value 

v 1  and v,, the r igh t  side of equa- 

$(+..) = 0 
i 
i 

If 
between Jlo and $(+m> because $(y) i s  a continuous function. Equation (14) then 
shows tha t  

$(y) assumes any value, say q0 < 0, then $(y) m u s t  take on all values 

v(y)  takes on a l l  values in  the two branches 

If $(y) takes on the value 
tiguous, and v(y) is  a continuous function. If $(y) does not take on t h i s  
value,  v(y) makes a jump at  

-[ (v1  - v2)/2I2, then the two branches become con- 

y = 0 which is  symmetrical about the ordinate 
(v1  + v,>/2. 

With $(y) as defined i n  equation (E?), and f[jr(y)] as defined i n  equation 
(15), the governing equation (11) can be rewritten 

Equation (16) w i l l  be solved f o r  
f i l e ,  v ( y ) ,  through equation (14).  
convenient t o  r i d  the in tegra l  of i t s  in f in i t e  limits. 

$ ( y ) ,  which w i l l  then yield the  veloci ty  pro- 
However, t o  solve equation (16),  it w i l l  be 

That t h i s  i s  possible can be seen by referr ing back t o  equation (11) and 
writ ing 

a 0 

[v(z)  - ~ ~ ( z ) ] ~ K ( y , z ) d ~  =l-" -m + -a + 1 a (17) 

where a is  a constant t o  be determined l a t e r .  It can be shown t h a t  f o r  any 
posi t ive number, R, it is possible t o  choose the constant, a ,  so t h a t  

~ 

I 

-R In  f a c t ,  i f  an e r ro r  no la rger  than 10 
f i ces  t h a t  a be chosen so  t h a t  

i s  permissible i n  v (y ) ,  then it suf- 
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Since E 3 ( t )  i s  monotonic decreasing with 

l i m  E 3 ( t )  = 0 
t + m  

the constant, a ,  can always be determined. 
between ( 2 / 4 4 ) ~ 3 ( a )  and a .  

Sketch (a) shows the relat ionship 

1 I 1 1 I I 
0 I 2 3 4 5 6 

- a  

16' t- 

Sketch (a) 

With a chosen t o  provide an e r r o r  no l a r g e r  than i n  v(y), i n t e r e s t  i s  
centered on the in t e rva l  

- a < y < a  - -  

for it i s  c l ea r  t ha t  

For y in  the in t e rva l  [-a, a ] ,  and a permissible e r r o r  o f  i n  v(y), equation 
(16) is  replaced by 
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-a w 
Hence, i f  ,f-oo and Ja 
writ ten 

are carr ied out ( re f .  3 ) ,  the governing equation (11) is  

where 

Equation (19) is  solved by the construction of a sequence of functions 

{qn(y)} defined as follows: 

with $,(y) 0. It i s  t o  be noted t h a t  \li z 0 corresponds t o  a s tep function 
with 

and 
v(y) = v1 for  y < o 

v(y) = v2 for  y > o 
It i s  seen from the recursion equation (21) t h a t ,  i f  the  sequence converges, 

Necessary and suf f ic ien t  the l i m i t  function m u s t  be a solution t o  equation (19).  
conditions fo r  the convergence of the sequence {$n(y)] a re  not known. The 

following suf f ic ien t  conditions (Hammerstein, r e f .  4 ) ,  a re  qui te  strong i n  
r e s t r i c t i n g  the magnitudes of A, f [ $ ( y ) ] ,  and K(y,z). They are: 

(ii) f [ $(y) ] s a t i s f i e s  a Lipschitz condition 

(iii) where A2(y)C2(y)dy = $ < 1 .r: 
Notice t h a t  (ii) does not r e s t r i c t  
be continuous. I n  f a c t ,  all t h a t  i s  required of any of the functions i s  t h a t  
t h e i r  squares be integrable.  
H-rstein.) 
integrable squares. Condition (i) is sa t i s f i ed  f o r  any kernel 

C(y) t o  be continuous; hence, f($) need not 

(Weaker and more precise conditions are given by 
Certainly,  all functions of the governing equation (19) have 
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or 

These are the kernel functions encountered i n  many rad ia t ion  problems. 

The most s t r ingent  o f  the  conditions f o r  convergence i s  condition (iii) , 
which r e s t r i c t s  the magnitudes of A, K(y,z), and f [$ (y ) ] .  It is  e a s i l y  shown 
t h a t  [K(y,z) I ,< 1 and f [ $ ( y ) ]  < 1/44 i n  equation (19) , but the parameter A, 
f o r  a given gas, i s  a function of-both shock s t rength and rad ia t ion  in t ens i ty  
( r e f .  1) . 
ment t h a t  t he  sequence does not converge. 

When both a re  "suf f ic ien t ly  strong ,I1 it w a s  found by numerical experi- 

To see t h a t  the  sequence {qn(y)} m u s t  converge when (i) , (ii) , and (iii) 

are  s a t i s f i e d ,  it i s  of value t o  note t h a t  (21) gives 

By use of the  Cauchy-Bunyakovski-Schwarz inequal i ty ,  equation ( 2 3 )  gives 

We have 

with 
a 

k2 = L z 2 ( 0 ) d z  
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I Then from (iii) (24) gives 
I 

i 

1 and so 

This l a s t  equation shows convergence of the sequence {$n(y)} a t  every point 
where lA(y) I < 03 ,  since (iii) assumes I@ < 1. 

It has been s ta ted  that fo r  a given gas ,  the parameter h is  a function of 
1 shock strength and radiat ion intensi ty .  

t h a t  
To see t h i s ,  it is necessary t o  r e c a l l  

i 
4(7 - l ) C r C I 6  h =  
r ( y  + 1 ) ~ ~  

while, from equations ( 5 )  and (9) 

so  t h a t  

This shows t h a t  A is  a function of q, the radiat ive heat flux and, hence, is  a 
function of radiat ion in tens i ty .  That h is a l so  a function of shock strength 
is evident from equation (ll) which shows tha t  h 
which, in turn ,  determine shock strength.  

is a function of VI and v2 



Numerical Procedure 

Construction o f  the sequence {+n(y)} f o r  t he  governing equation (19) w a s  

accomplished by an i t e r a t i v e  procedure on an IBM 7090 computer. 
w a s  carr ied out using Gaussian quadrature methods with the number o f  abscissas  
increasing as y = 0 i s  approached. 

The integrat ion 

With )qo(y) E 0 ,  it i s  possible t o  obtain an ana ly t ic  expression f o r  -Ql(y) 
from equation (21) .  The number and posi t ion o f  the  abscissas were determined by 
the requirement t h a t  the ana ly t ic  and numerical methods y ie ld  values f o r  v [q l (y ) ]  
which agreed a t  every abscissa t o  within 

With the constant a s e t  equal t o  3 ,  the  e r ro r  i n  computing v(y)  f rom 
Since t h i s  e r ro r  i s  the same equation (11) is l e s s  than 2 / 4 4 ~ ~ - 3  - ~XLO-? 

order of magnitude as tha t  i n  the  numerical in tegra t ion ,  the in t e rva l  [-?,?I was 
chosen f o r  the range of  the  in t eg ra l  i n  equation (11). 

The in te rva l  [-3,5] was subdivided by the  inser t ion o f  a t o t a l  of 129 points ,  
y j ( j  = 1, 2 ,  . . . , 129). The values of $(y) = l i m  jn(y)  were approximated a t  

n-. 0~ 
these poin ts ,  the approximation being considered accurate when 

An exponential interpolat ion w a s  used t o  determine values o f  
chosen abscissas.  

>$n(y) between the 

RESULTS AND DISCUSSION 

Figure 1 depicts  t w o  veloci ty  p ro f i l e s  which r e s u l t  from diss imi la r  physical 
conditions. The data fo r  both graphs were obtained by the  methods of t h i s  paper 
with par t icu lar  values of A chosen t o  coincide with t w o  examples considered in  
reference 1. In order t ha t  the  p ro f i l e s  o f  f igure  1 could be accurately compared 
with t h e i r  counterparts from reference 1, the  numerical values used i n  construct- 
ing the  graphs of reference 1 were obtained. Comparison w a s  then made between 
numerical values from reference 1 and those f rom the  d i r ec t  solut ion,  used i n  
constructing f igure 1. The t w o  methods y ie ld  results which d i f f e r  so s l i g h t l y  
t h a t  graphical comparison i s  best  made on the  bas i s  of percentage e r ror .  

(v(y)  from reference 1) - (v(y) from d i r ec t  solut ion)  
v(y)  from d i r ec t  solut ion 

Percentage error  = 
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The comparison is  made i n  f igure 2.  
p e r s i s t s  as A 
changes f r o m  a weak shock and weak radiat ion t o  a strong shock and strong 
rad ia t ion .  The l a r g e s t  percentage e r r o r  i n  the  e n t i r e  i n t e rva l  [-?,?I, f o r  any 
of the  examples compared, w a s  1.07 percent; t h i s  was obtained with A equal t o  
100. For lyl > 5 ,  both the  d i r e c t  solution and the  results of reference 1 give 
the  same result t o  6 decimal places.  

It is  t o  be noticed t h a t  the close agreement 
changes by a fac tor  of 10,  as it does when the  physical s i t ua t ion  

It w i l l  be noticed t h a t  f igure 2 shows the percentage e r ro r  t o  be near ly  
A -100. symmetrical about t h e  shock f o r  

There is  no reason t o  believe t h a t  the difference between the  r e su l t s  f rom the  
two methods should exhib i t  symmetry. 
ve loc i ty  p ro f i l e  t o  be asymmetrical about the shock, with the  asymmetry becoming 
more noticeable with increasing A. 

A -10, but not so  symmetrical f o r  

Both methods d id ,  however, c l ea r ly  show the  

It is  not known what pa r t  of the  actual  difference in  r e s u l t s  i s  due t o  the 
e r ro r s  inherent i n  numerical processes. As s t a t ed  earlier,  there  i s  reason t o  
believe t h a t  the d i r e c t  solut ions by methods o f  t h i s  paper y ie ld  veloci ty  p ro f i l e s  
which a re  accurate t o  a t  least i n  v(y). 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif. , Sept . 26, 1963 
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